
The following is a copy of the file "APPNOTE.TXT" from the file PKZ193A.EXE. This file describes the .ZIP
file format and the archiving/dearchiving algorithms used by PKZIP and PKUNZIP.

Disclaimer

Although PKWARE will attempt to supply current and accurate
information relating to its file formats, algorithms, and the
subject programs, the possibility of error can not be eliminated.
PKWARE therefore expressly disclaims any warranty that the
information contained in the associated materials relating to the
subject programs and/or the format of the files created or
accessed by the subject programs and/or the algorithms used by
the subject programs, or any other matter, is current, correct or
accurate as delivered.    Any risk of damage due to any possible
inaccurate information is assumed by the user of the information.
Furthermore, the information relating to the subject programs
and/or the file formats created or accessed by the subject
programs and/or the algorithms used by the subject programs is
subject to change without notice.

General Format of a ZIP file

    Files stored in arbitrary order.    Large zipfiles can span multiple
    diskette media.

    Overall zipfile format:

        [local file header+file data] . . .
        [central directory] end of central directory record

    A.    Local file header:

local file header signature
            4 bytes    (0x04034b50)

version needed to extract
                2 bytes

general purpose bit flag
                  2 bytes

compression method

                            2 bytes

last mod file time

                          2 bytes

last mod file date

                            2 bytes

crc-32     

  4 bytes

compressed size

                                4 bytes

uncompressed size

                              4 bytes

filename length

                                2 bytes

extra field length

                            2 bytes

filename (variable size)

extra field (variable size)

    B.    Central directory structure:

            [file header] . . .    end of central dir record

            File header:

central file header signature
        4 bytes    (0x02014b50)

version made by

                                2 bytes

version needed to extract
                2 bytes

general purpose bit flag

                  2 bytes

compression method

                            2 bytes

last mod file time

                          2 bytes

last mod file date

                            2 bytes

crc-32     

  4 bytes

compressed size

                                4 bytes

uncompressed size

                              4 bytes

filename length

                                2 bytes

extra field length

                            2 bytes

file comment length

                          2 bytes

disk number start

                              2 bytes

internal file attributes
                  2 bytes

external file attributes
                  4 bytes

relative offset of local header
    4 bytes

filename (variable size)

extra field (variable size)

file comment (variable size)

            End of central dir record:

end of central dir signature
          4 bytes    (0x06054b50)

number of this disk

                          2 bytes

number of the disk with the

start of the central directory     
2 bytes

total number of entries in

the central dir on this disk
          2 bytes

total number of entries in

the central dir

                                2 bytes

size of the central directory          4 bytes

offset of start of central

directory with respect to

the starting disk number
                  4 bytes

zipfile comment length

                    2 bytes

zipfile comment (variable size)

    C.    Explanation of fields:

            version made by

    The upper byte indicates the host system (OS) for the

    file.    Software can use this information to determine

    the line record format for text files etc.    The current

    mappings are:

    0 - MS-DOS and OS/2 (F.A.T. file systems)

    1 - Amiga

                2 - VMS

    3 - *nix

                  4 - VM/CMS

    5 - Atari ST                6 - OS/2 H.P.F.S.

    7 - Macintosh
            8 - Z-System

    9 - CP/M

                  10 thru 255 - unused

    The lower byte indicates the version number of the

    software used to encode the file.    The value/10

    indicates the major version number, and the value

    mod 10 is the minor version number.

            version needed to extract

    The minimum software version needed to extract the

    file, mapped as above.

            general purpose bit flag:

      bit 0: If set, indicates that the file is encrypted.

      (For Method 6 - Imploding)
      bit 1: If the compression method used was type 6,

                Imploding, then this bit, if set, indicates

                an 8K sliding dictionary was used.    If clear,

                then a 4K sliding dictionary was used.
      bit 2: If the compression method used was type 6,

                Imploding, then this bit, if set, indicates

                an 3 Shannon-Fano trees were used to encode the

                sliding dictionary output.    If clear, then 2

                Shannon-Fano trees were used.

      (For Method 8)
      bit 1: If this bit is set, the file was compressed with
                    the maximum compression version of the type 8
                    compression algorithm.    (-ex option)
      bit 2: If this bit is set, the file was compressed with
                    the fastest version of the type 8 compression
                    algorithm.    (-es option)

    Note:    Bits 1 and 2 are undefined if the compression
                                  method is any other.

      The upper three bits are reserved and used internally

    by the software when processing the zipfile.    The

    remaining bits are unused in version 1.0.

            compression method:

    (see accompanying documentation for algorithm

    descriptions)

    0 - The file is stored (no compression)

    1 - The file is Shrunk

    2 - The file is Reduced with compression factor 1

    3 - The file is Reduced with compression factor 2

    4 - The file is Reduced with compression factor 3

    5 - The file is Reduced with compression factor 4
      6 - The file is Imploded
      7 - Reserved for Tokenizing compression alogrithm
      8 - The algorithm used by the latest version of
              PKZIP/PKUNZIP.

            date and time fields:

    The date and time are encoded in standard MS-DOS

    format.

            CRC-32:

    The CRC-32 algorithm was generously contributed by

    David Schwaderer and can be found in his excellent

    book "C Programmers Guide to NetBIOS" published by

    Howard W. Sams & Co. Inc.    The 'magic number' for

    the CRC is 0xdebb20e3.    The proper CRC pre and post

    conditioning is used, meaning that the CRC register

    is pre-conditioned with all ones (a starting value

    of 0xffffffff) and the value is post-conditioned by

    taking the one's complement of the CRC residual.

            compressed size:
            uncompressed size:

    The size of the file compressed and uncompressed,

    respectively.

            filename length:
            extra field length:
            file comment length:

    The length of the filename, extra field, and comment

    fields respectively.    The combined length of any

    directory record and these three fields should not

    generally exceed 65,535 bytes.

            disk number start:

    The number of the disk on which this file begins.

            internal file attributes:

    The lowest bit of this field indicates, if set, that

    the file is apparently an ASCII or text file.    If not

    set, that the file apparently contains binary data.

    The remaining bits are unused in version 1.0.

            external file attributes:

    The mapping of the external attributes is

    host-system dependent (see 'version made by').    For

    MS-DOS, the low order byte is the MS-DOS directory

    attribute byte.

            relative offset of local header:

    This is the offset from the start of the first disk on

    which this file appears, to where the local header should

    be found.

            filename:

    The name of the file, with optional relative path.

    The path stored should not contain a drive or

    device letter, or a leading slash.    All slashes

    should be forward slashes '/' as opposed to

    backwards slashes '\' for compatibility with Amiga

    and Unix file systems etc.

            extra field:

    This is for future expansion.    If additional information

    needs to be stored in the future, it should be stored

    here.    Earlier versions of the software can then safely

    skip this file, and find the next file or header.    This

    field will be 0 length in version 1.0.

    In order to allow different programs and different types

    of information to be stored in the 'extra' field in .ZIP

    files, the following structure should be used for all

    programs storing data in this field:

    header1+data1 + header2+data2 . . .

    Each header should consist of:

        Header ID - 2 bytes

        Data Size - 2 bytes

    Note: all fields stored in Intel low-byte/high-byte order.

    The Header ID field indicates the type of data that is in

    the following data block.

    Header ID's of 0 thru 31 are reserved for use by PKWARE.

    The remaining ID's can be used by third party vendors for

    proprietary usage.

    The Data Size field indicates the size of the following

    data block. Programs can use this value to skip to the

    next header block, passing over any data blocks that are

    not of interest.

    Note: As stated above, the size of the entire .ZIP file

header, including the filename, comment, and extra

 field should not exceed 64K in size.

    In case two different programs should appropriate the same

    Header ID value, it is strongly recommended that each

    program place a unique signature of at least two bytes in

    size (and preferably 4 bytes or bigger) at the start of

    each data area.    Every program should verify that it's

    unique signature is present, in addition to the Header ID

    value being correct, before assuming that it is a block of

    known type.

            file comment:

    The comment for this file.

            number of this disk:

    The number of this disk, which contains central

    directory end record.

            number of the disk with the start of the central directory:

    The number of the disk on which the central

    directory starts.

            total number of entries in the central dir on this disk:

    The number of central directory entries on this disk.

            total number of entries in the central dir:

    The total number of files in the zipfile.

            size of the central directory:

    The size (in bytes) of the entire central directory.

            offset of start of central directory with respect to
            the starting disk number:

    Offset of the start of the central direcory on the

    disk on which the central directory starts.

            zipfile comment length:

    The length of the comment for this zipfile.

            zipfile comment:

    The comment for this zipfile.

    D.    General notes:

            1)    All fields unless otherwise noted are unsigned and stored

    in Intel low-byte:high-byte, low-word:high-word order.

            2)    String fields are not null terminated, since the

    length is given explicitly.

            3)    Local headers should not span disk boundries.    Also, even

    though the central directory can span disk boundries, no

    single record in the central directory should be split

    across disks.

            4)    The entries in the central directory may not necessarily

    be in the same order that files appear in the zipfile.

UnShrinking - Method 1

Shrinking is a Dynamic Ziv-Lempel-Welch compression algorithm
with partial clearing.    The initial code size is 9 bits, and
the maximum code size is 13 bits.    Shrinking differs from
conventional Dynamic Ziv-lempel-Welch implementations in several
respects:

1)    The code size is controlled by the compressor, and is not
        automatically increased when codes larger than the current
        code size are created (but not necessarily used).    When
        the decompressor encounters the code sequence 256
        (decimal) followed by 1, it should increase the code size
        read from the input stream to the next bit size.    No
        blocking of the codes is performed, so the next code at
        the increased size should be read from the input stream
        immediately after where the previous code at the smaller
        bit size was read.    Again, the decompressor should not
        increase the code size used until the sequence 256,1 is
        encountered.

2)    When the table becomes full, total clearing is not
        performed.    Rather, when the compresser emits the code
        sequence 256,2 (decimal), the decompressor should clear
        all leaf nodes from the Ziv-Lempel tree, and continue to
        use the current code size.    The nodes that are cleared
        from the Ziv-Lempel tree are then re-used, with the lowest
        code value re-used first, and the highest code value
        re-used last.    The compressor can emit the sequence 256,2
        at any time.

Expanding - Methods 2-5

The Reducing algorithm is actually a combination of two
distinct algorithms.    The first algorithm compresses repeated
byte sequences, and the second algorithm takes the compressed
stream from the first algorithm and applies a probabilistic
compression method.

The probabilistic compression stores an array of 'follower
sets' S(j), for j=0 to 255, corresponding to each possible
ASCII character.    Each set contains between 0 and 32
characters, to be denoted as S(j)[0],...,S(j)[m], where m<32.
The sets are stored at the beginning of the data area for a
Reduced file, in reverse order, with S(255) first, and S(0)
last.

The sets are encoded as N(j), S(j)[0],...,S(j)[N(j)-1] ,
where N(j) is the size of set S(j).    N(j) can be 0, in which
case the follower set for S(j) is empty.    Each N(j) value is
encoded in 6 bits, followed by N(j) eight bit character values
corresponding to S(j)[0] to S(j)[N(j)-1] respectively.    If
N(j) is 0, then no values for S(j) are stored, and the value
for N(j-1) immediately follows.

Immediately after the follower sets, is the compressed data
stream.    The compressed data stream can be interpreted for the
probabilistic decompression as follows:

let Last-Character <- 0.
loop until done
        if the follower set S(Last-Character) is empty then

read 8 bits from the input stream, and copy this

value to the output stream.
        otherwise if the follower set S(Last-Character) is non-empty then

read 1 bit from the input stream.

if this bit is not zero then

        read 8 bits from the input stream, and copy this

        value to the output stream.

otherwise if this bit is zero then

        read B(N(Last-Character)) bits from the input

        stream, and assign this value to I.

        Copy the value of S(Last-Character)[I] to the

        output stream.

        assign the last value placed on the output stream to
        Last-Character.
end loop

B(N(j)) is defined as the minimal number of bits required to
encode the value N(j)-1.

The decompressed stream from above can then be expanded to
re-create the original file as follows:

let State <- 0.

loop until done
        read 8 bits from the input stream into C.
        case State of

0:    if C is not equal to DLE (144 decimal) then

copy C to the output stream.

        otherwise if C is equal to DLE then

let State <- 1.

1:    if C is non-zero then

let V <- C.

let Len <- L(V)

let State <- F(Len).

        otherwise if C is zero then

copy the value 144 (decimal) to the output stream.

let State <- 0

2:    let Len <- Len + C

        let State <- 3.

3:    move backwards D(V,C) bytes in the output stream

        (if this position is before the start of the output

        stream, then assume that all the data before the

        start of the output stream is filled with zeros).

        copy Len+3 bytes from this position to the output stream.

        let State <- 0.
        end case
end loop

The functions F,L, and D are dependent on the 'compression
factor', 1 through 4, and are defined as follows:

For compression factor 1:
        L(X) equals the lower 7 bits of X.
        F(X) equals 2 if X equals 127 otherwise F(X) equals 3.
        D(X,Y) equals the (upper 1 bit of X) * 256 + Y + 1.
For compression factor 2:
        L(X) equals the lower 6 bits of X.
        F(X) equals 2 if X equals 63 otherwise F(X) equals 3.
        D(X,Y) equals the (upper 2 bits of X) * 256 + Y + 1.
For compression factor 3:
        L(X) equals the lower 5 bits of X.
        F(X) equals 2 if X equals 31 otherwise F(X) equals 3.
        D(X,Y) equals the (upper 3 bits of X) * 256 + Y + 1.
For compression factor 4:
        L(X) equals the lower 4 bits of X.
        F(X) equals 2 if X equals 15 otherwise F(X) equals 3.
        D(X,Y) equals the (upper 4 bits of X) * 256 + Y + 1.

Imploding - Method 6

The Imploding algorithm is actually a combination of two distinct
algorithms.    The first algorithm compresses repeated byte
sequences using a sliding dictionary.    The second algorithm is
used to compress the encoding of the sliding dictionary ouput,
using multiple Shannon-Fano trees.

The Imploding algorithm can use a 4K or 8K sliding dictionary
size. The dictionary size used can be determined by bit 1 in the
general purpose flag word, a 0 bit indicates a 4K dictionary
while a 1 bit indicates an 8K dictionary.

The Shannon-Fano trees are stored at the start of the compressed
file. The number of trees stored is defined by bit 2 in the

general purpose flag word, a 0 bit indicates two trees stored, a
1 bit indicates three trees are stored.    If 3 trees are stored,
the first Shannon-Fano tree represents the encoding of the
Literal characters, the second tree represents the encoding of
the Length information, the third represents the encoding of the
Distance information.    When 2 Shannon-Fano trees are stored, the
Length tree is stored first, followed by the Distance tree.

The Literal Shannon-Fano tree, if present is used to represent
the entire ASCII character set, and contains 256 values.    This
tree is used to compress any data not compressed by the sliding
dictionary algorithm.    When this tree is present, the Minimum
Match Length for the sliding dictionary is 3.    If this tree is
not present, the Minimum Match Length is 2.

The Length Shannon-Fano tree is used to compress the Length part
of the (length,distance) pairs from the sliding dictionary
output.    The Length tree contains 64 values, ranging from the
Minimum Match Length, to 63 plus the Minimum Match Length.

The Distance Shannon-Fano tree is used to compress the Distance
part of the (length,distance) pairs from the sliding dictionary
output. The Distance tree contains 64 values, ranging from 0 to
63, representing the upper 6 bits of the distance value.    The
distance values themselves will be between 0 and the sliding
dictionary size, either 4K or 8K.

The Shannon-Fano trees themselves are stored in a compressed
format. The first byte of the tree data represents the number of
bytes of data representing the (compressed) Shannon-Fano tree
minus 1.    The remaining bytes represent the Shannon-Fano tree
data encoded as:

        High 4 bits: Number of values at this bit length + 1. (1 - 16)
        Low    4 bits: Bit Length needed to represent value + 1. (1 - 16)

The Shannon-Fano codes can be constructed from the bit lengths
using the following algorithm:

1)    Sort the Bit Lengths in ascending order, while retaining the
        order of the original lengths stored in the file.

2)    Generate the Shannon-Fano trees:

        Code <- 0
        CodeIncrement <- 0
        LastBitLength <- 0
        i <- number of Shannon-Fano codes - 1      (either 255 or 63)

        loop while i >= 0

Code = Code + CodeIncrement

if BitLength(i) <> LastBitLength then

        LastBitLength=BitLength(i)

        CodeIncrement = 1 shifted left (16 - LastBitLength)

ShannonCode(i) = Code

i <- i - 1
        end loop

3)    Reverse the order of all the bits in the above ShannonCode()
        vector, so that the most significant bit becomes the least
        significant bit.    For example, the value 0x1234 (hex) would
        become 0x2C48 (hex).

4)    Restore the order of Shannon-Fano codes as originally stored
        within the file.

Example:

        This example will show the encoding of a Shannon-Fano tree
        of size 8.    Notice that the actual Shannon-Fano trees used
        for Imploding are either 64 or 256 entries in size.

Example:      0x02, 0x42, 0x01, 0x13

        The first byte indicates 3 values in this table.    Decoding the
        bytes:

        0x42 = 5 codes of 3 bits long

        0x01 = 1 code    of 2 bits long

        0x13 = 2 codes of 4 bits long

        This would generate the original bit length array of:
        (3, 3, 3, 3, 3, 2, 4, 4)

        There are 8 codes in this table for the values 0 thru 7.    Using the
        algorithm to obtain the Shannon-Fano codes produces:

  Reversed          Order          Original
Val    Sorted      Constructed Code            Value          Restored        Length
---    ------      -----------------      --------        --------        ------
0:          2            1100000000000000                11              101                    3
1:          3            1010000000000000              101              001                    3
2:          3            1000000000000000              001              110                    3
3:          3            0110000000000000              110              010                    3
4:          3            0100000000000000              010              100                    3
5:          3            0010000000000000              100                11                    2
6:          4            0001000000000000            1000            1000                    4
7:          4            0000000000000000            0000            0000                    4

The values in the Val, Order Restored and Original Length columns
now represent the Shannon-Fano encoding tree that can be used for
decoding the Shannon-Fano encoded data.    How to parse the
variable length Shannon-Fano values from the data stream is beyond the

scope of this document.    (See the references listed at the end of
this document for more information.)    However, traditional decoding
schemes used for Huffman variable length decoding, such as the
Greenlaw algorithm, can be succesfully applied.

The compressed data stream begins immediately after the
compressed Shannon-Fano data.    The compressed data stream can be
interpreted as follows:

loop until done
        read 1 bit from input stream.

        if this bit is non-zero then              (encoded data is literal data)

if Literal Shannon-Fano tree is present

        read and decode character using Literal Shannon-Fano tree.

otherwise

        read 8 bits from input stream.

copy character to the output stream.
        otherwise                                      (encoded data is sliding dictionary match)

if 8K dictionary size

        read 7 bits for offset Distance (lower 7 bits of offset).

otherwise

        read 6 bits for offset Distance (lower 6 bits of offset).

using the Distance Shannon-Fano tree, read and decode the

    upper 6 bits of the Distance value.

using the Length Shannon-Fano tree, read and decode

    the Length value.

Length <- Length + Minimum Match Length

if Length = 63 + Minimum Match Length

        read 8 bits from the input stream,

        add this value to Length.

move backwards Distance+1 bytes in the output stream, and

copy Length characters from this position to the output

stream.    (if this position is before the start of the output

stream, then assume that all the data before the start of

the output stream is filled with zeros).
end loop

Tokenizing - Method 7

Not currently supported by PKZIP or PKUNZIP.

?????? - Method 8

The ?????? algorithm is similiar to the Implode algorithm using
a sliding dictionary of up to 32K with secondary compression
from dynamic Huffman/Shannon-Fano codes.

The compressed data is stored in blocks with a header describing
the block and the huffman codes used in the data block.    The header
format is as follows:

      Bit 1: Last Block bit          This bit is set to 1 if this is the last
  compressed block in the data.
      Bits 2-3: Block type
            00 (0) - Block is stored - All stored data is byte aligned.
                              Skip bits until next byte, then next word = block length,
                              followed by the ones compliment of the block length word.
                              Remaining data in block is the stored data.

            01 (1) - Use fixed huffman codes for literal and distance codes.
                              Lit Code        Bits                          Dist Code      Bits
                              ---------      ----                          ---------      ----
                                  0 - 143        8                                  0 - 31            5
                              144 - 255        9
                              256 - 279        7
                              280 - 287        8

            10 (2) - Dynamic huffman codes.    (See expanding huffman codes)

            11 (3) - Reserved - Flag a "Error in compressed data" if seen.

Expanding Huffman Codes

If the data block is stored with dynamic huffman codes, the huffman
codes are sent in the following compressed format:

      5 Bits: # of Literal codes sent + 255 (256 - 286)
                      All other codes are never sent.

      5 Bits: # of Dist codes - 1                      (1 - 32)
      4 Bits: # of Bit Length codes - 3          (3 - 19)

The Huffman codes are sent as bit lengths and the codes are built as
described in the implode algorithm.    The Bit lengths themselves are
compressed with huffman codes.    There are 19 bit length codes:

      0 - 15: Represent bit lengths of 0 - 15
              16: Copy the Previous bit length 3 - 6 times.
                      The next 2 bits indicate repeat length (0 = 3, ... ,3 = 6)
              17: Repeat a bit length of 0 for 3 - 10 times. (3 bits of length)
              18: Repeat a bit length of 0 for 11 - 138 times (7 bits of length)

The lengths of the bit length codes are sent packed 3 bits per value
(0 - 7) in the following order:

      16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15

The huffman codes should be built as described in the Implode alogrithm
except codes are assigned starting at the shortest bit length, i.e. the
shortest code should be all 0's rather than all 1's.    These codes are
then used to decode the bit lengths for the literal and distance tables.

The bit lengths for the literal tables are sent first with the number
of entries sent described by the 5 bits sent earlier.    There are up
to 288 literal characters, the first 256 represent the respective 8
bit character, code 257 represents the End-Of-Block code, the remaining
29 codes represent copy lengths of 3 thru 258.    There are up to 30
distance codes representing distances from 1 thru 32k as described
below.

  Length Codes

            Extra                          Extra                            Extra                            Extra
 Code Bits Length    Code Bits Lengths    Code Bits Lengths    Code Bits Length(s)
 ---- ---- ------    ---- ---- -------    ---- ---- -------    ---- ---- ---------
    257      0          3          265      1      11,12        273      3      35-42        281      5    131-162
    258      0          4          266      1      13,14        274      3      43-50        282      5    163-194
    259      0          5          267      1      15,16        275      3      51-58        283      5    195-226
    260      0          6          268      1      17,18        276      3      59-66        284      5    227-257
    261      0          7          269      2      19-22        277      4      67-82        285      0        258
    262      0          8          270      2      23-26        278      4      83-98
    263      0          9          271      2      27-30        279      4      99-114
    264      0        10          272      2      31-34        280      4    115-130

  Distance Codes

            Extra                      Extra                          Extra                              Extra
 Code Bits Dist    Code Bits    Dist      Code Bits Distance    Code Bits Distance
 ---- ---- ----    ---- ---- ------    ---- ---- --------    ---- ---- --------
      0      0        1            8      3      17-24        16        7    257-384        24      11    4097-6144
      1      0        2            9      3      25-32        17        7    385-512        25      11    6145-8192
      2      0        3          10      4      33-48        18        8    513-768        26      12    8193-12288
      3      0        4          11      4      49-64        19        8    769-1024      27      12 12289-16384
      4      1      5,6        12      5      65-96        20        9 1025-1536      28      13 16385-24576
      5      1      7,8        13      5      97-128      21        9 1537-2048      29      13 24577-32768
      6      2      9-12      14      6    129-192      22      10 2049-3072
      7      2    13-16      15      6    193-256      23      10 3073-4096

The compressed data stream begins immediately after the
compressed header data.    The compressed data stream can be
interpreted as follows:

do
      read header from input stream.

      if stored block
            skip bits until byte aligned
            read count and 1's compliment of count
            copy count bytes data block
      otherwise
            loop until end of block code sent
                  decode literal character from input stream
                  if literal < 256
                        copy character to the output stream
                  otherwise
                        if literal = end of block
                              break from loop
                        otherwise
                              decode distance from input stream

                              move backwards distance bytes in the output stream, and
                              copy length characters from this position to the output
                              stream.
            end loop
while not last block

Decryption

The encryption used in PKZIP was generously supplied by Roger
Schlafly.    PKWARE is grateful to Mr. Schlafly for his expert
help and advice in the field of data encryption.

PKZIP encrypts the compressed data stream.    Encrypted files must
be decrypted before they can be extracted.

Each encrypted file has an extra 12 bytes stored at the start of
the data area defining the encryption header for that file.    The
encryption header is originally set to random values, and then
itself encrypted, using 3, 32-bit keys.    The key values are
initialized using the supplied encryption password.    After each byte
is encrypted, the keys are then updated using psuedo-random number
generation techniques in combination with the same CRC-32 algorithm
used in PKZIP and described elsewhere in this document.

The following is the basic steps required to decrypt a file:

1) Initialize the three 32-bit keys with the password.
2) Read and decrypt the 12-byte encryption header, further
      initializing the encryption keys.
3) Read and decrypt the compressed data stream using the
      encryption keys.

Step 1 - Initializing the encryption keys

Key(0) <- 305419896
Key(1) <- 591751049
Key(2) <- 878082192

loop for i <- 0 to length(password)-1
        update_keys(password(i))
end loop

Where update_keys() is defined as:

update_keys(char):
    Key(0) <- crc32(key(0),char)
    Key(1) <- Key(1) + (Key(0) & 000000ffH)
    Key(1) <- Key(1) * 134775813 + 1
    Key(2) <- crc32(key(2),key(1) >> 24)
end update_keys

Where crc32(old_crc,char) is a routine that given a CRC value and a
character, returns an updated CRC value after applying the CRC-32
algorithm described elsewhere in this document.

Step 2 - Decrypting the encryption header

The purpose of this step is to further initialize the encryption
keys, based on random data, to render a plaintext attack on the
data ineffective.

Read the 12-byte encryption header into Buffer, in locations
Buffer(0) thru Buffer(11).

loop for i <- 0 to 11
        C <- buffer(i) ^ decrypt_byte()
        update_keys(C)
        buffer(i) <- C
end loop

Where decrypt_byte() is defined as:

unsigned char decrypt_byte()
        local unsigned short temp
        temp <- Key(2) | 2
        decrypt_byte <- (temp * (temp ^ 1)) >> 8
end decrypt_byte

After the header is decrypted, the last two bytes in Buffer
should be the high-order word of the CRC for the file being
decrypted, stored in Intel low-byte/high-byte order.    This can
be used to test if the password supplied is correct or not.

Step 3 - Decrypting the compressed data stream
--

The compressed data stream can be decrypted as follows:

loop until done
        read a charcter into C
        Temp <- C ^ decrypt_byte()
        update_keys(temp)
        output Temp
end loop

In addition to the above mentioned contributors to PKZIP and PKUNZIP,
I would like to extend special thanks to Robert Mahoney for suggesting
the extension .ZIP for this software.

References:

        Storer, James A. "Data Compression, Methods and Theory",
              Computer Science Press, 1988

        Held, Gilbert    "Data Compression, Techniques and Applications,

        Hardware and Software Considerations"
              John Wiley & Sons, 1987

